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1. TCIP-Net: Quantifying Radial Structure Evolution for Tropical

Cyclone Intensity Prediction
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TCIP-Net: Quantifying Radial Structure Evolution
for Tropical Cyclone Intensity Prediction

Wei Tian™, Yuanyuan Chen™, Ping Song"™, Haifeng Xu™, Liguang Wu™,
Yonghong Zhang ™, Chunyi Xiang™, and Shifeng Hao

Abstract— Tropical cyclones (TCs) are among the most deadly
and ing natural s in coastal areas worldwide.
Traditional forecasti thods face challenges as they neglect
crucial spatial information related to intensity changes and
require substantial human and material resources. Moreover,
current deep learning approaches often rely on reanalysis of data
from observations far from land, making them challenging to
aequire and operationalize. In response to these issues, the article
introduces the TC intensity prediction network (TCIP-Net),
which, while maintaining interpretability, successfully extracts
rich convective structural information from the infrared (IR)
channel of satellite imagery. We present the spatio-temporal
evolution trajectory of TC radial structural information through
Hovmiller diagrams. In addition, we construct a subnetwork
with one backbone convolution and four branch convolution
operations to extract asymmetric information of TC structure.
The convective core (CC) reveals the distribution of convective
systems around the eye, aiding in targeted attention to convective
information in IR imagery. The model aims to quantitatively
explain the contributions of satellite imagery (IR and microwave),
convective structure, and key physical factors to the TC intensity
prediction task. We utilize multiple TC cases to assess and
validate the applicability and effectiveness of the model. The
results indicate that TCIP-Net achieved good performance. This
approach provides practical guidance for predicting TC inten-
sity using advanced artificial intelligence-based methods and is
expected to complement operational models.

Index Terms— Asymmetric information, convective core (CC),
convective structural information, tropical cyclone intensity pre-
diction network (TCIP-Net).
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I. INTRODUCTION

ROPICAL cyclones (TCs), as one of the most destructive

meteorological phenomena in the natural world, exhibit
particularly high activity in the Northwest Pacific basin. They
have severe and widespread impacts on human societies,
including casualties, damage to housing and infrastructure,
flooding, storm surges, tsunamis, agricultural and fisheries
losses, and wvarious socio-economic effects. The economic
losses caused by TC show an exponential relationship with
TC intensity. To effectively mitigate the impact of TC-induced
disasters, a series of measures must be swiftly implemented.
Early prediction not only safeguards the lives and property of
the people but also guides emergency response and resource
allocation, thereby minimizing casualties and property losses
to the greatest extent possible. Therefore, TC intensity predic-
tion plays an indispensable and crucial role in modern disaster
management.

TC intensity is typically defined by the maximum sustained
wind (MSW) speed or the minimum sea level pressure (MSLP)
at the TC center, which are key metrics for guantifying
the severity of a TC. These metrics are influenced by mul-
tiple factors. There exists a physical relationship between
the cloud patterns observed in satellite imagery and TC
intensity. Based on the assumption that TC with similar
cloud features has similar intensities, high (low) intensity
TC typically exhibits a well-defined (obscured) eye and a
high degree of (nonjaxisymmetry. Therefore, researchers can
leverage satellite imagery to build models that learn TC
cloud features to estimate and predict TC intensity. This
task can be framed as a spatio-temporal regression problem,
where the dynamic features of cloud patterns over time in
satellite imagery are analyzed and modeled to predict TC
intensity. This approach not only utilizes spatial informa-
tion but also incorporates temporal dynamics, providing a
more accurate and comprehensive basis for TC intensity
prediction

Early TC intensity predictions primarily relied on empirical
models. which were based on meteorologists’ expertise and
basic observational data. With the advancement of compu-
tational capabilities, numerous numerical [1] and statistical
models [2] have been developed to provide predictive guidance
for future TC intensity changes. Although these methods have
achieved a degree of success, they still face challenges in
accuracy, flexibility, and real-time performance due to the
complex dynamics of TC.

1558-0644 @ 2024 IEEE. Personal use is permitted. but republication/redistribution requires IEEE permission.
See hipsiwww.ieee.org/publications/rights/index.html for more information.
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ARTICLE INFO ABSTRACT

Communicated by B. Li Radar extrapolation has been one of the most important means for noweasting. Most current models achieve

good performance in high-frequency sequences (e.g., video, more than 24 fps), while the temporal resolution

Radarat of radar echo sequences is much lower {1 frame every & min) and the transforms are much more complex.

Radar exteapalation The spatiotemporal characters with some similarities would not change a lot in video sequences; however, the

spatiatemparal prediction radar echo sequences include more intangible changes (e.g., the echo evolution of generation or vanish, and
s0 on), which leads to unique distinct spatial and temporal characters, respectively. Therefore, the singular
peculiarity would be mitigated, leading to a rapid decline in precision end sharpness during the extrapolation
process. In general, temporal feature extraction is utilized to understand the variation in pixel locations, while
spatial feature extraction is employed to capture the distribution variation of specific regions. In this work,
we propose a feature decomposition network, termed as RadarNet to improve the extrapolation precision. The
parallel independent encoders are used to enhance multi-scale spatial feature extraction and temporal motion
feature capture of radar echoes, respectively. In addition, we design a specialized cross fusion mechanism to
achieve the inputs of the decoder which may enhance the performance of the extrapolation. The extrapolation
experiments are conducted on real radar echo datasets from Shijfiszhuang and Nanjing that demonstrate the
effectiveness of our model.

Keywords:

1. Introduction Traditionally, methods for radar extrapolation such as centroid
tracking [3], cross-correlation [4], and optical flow [5] just calculate

As a challenging task in the field of weather forecasting, convec- motion vectors based on the hypothesis that it is a kind of rigid body
tive precipitation forecasting is particularly important for the relevant motion which leads o the low precision and short forecasting time-
authorities to take timely action to avoid large-scale losses at the validity. Recently, researches on spatiotemporal sequence prediction,
societal level. Therefore, the generation of high accuracy and resolution which is actually the essential problem of radar extrapolation, have
radar echo images in a short period of time has become a hot topic  ,chjeved great improvements compared with the traditional meth-
in convective precipitation forecasting. As one of the ELLr!damental ods [6,7]. Some approaches hamess the power of generative adversarial
remafe sensl.ng_l.nstrumgn_ts, .the weather rada.r. plays an important networks to model intricate atmospheric chaotic dynamics, enabling
role in convective precipitation forecasting. With the advantage of real-time high-resolution prediction. Yet, achieving efficiency In predic-
fgh spachilemparal resohition-and cloge-corve lation bo;metentd oical tion necessitates substantial investment in training data and numerous

conditions, the detected radar echo serves as the forecaster to identify 3 B 7
2 : parameter adjustments, posing significant costs [8,9]. Considering the
and classify weather systems [1]. Especially, it is possible to forecast the g g
sensitivity of recurrent neural networks to temporal dependencies, ad-

weather condition through the prediction of intensity and distribution

of radar reflectivity based on pre-existing radar echo observations. ditional methods integrate efficient spatial feature extraction modules
Thus, radar extrapolation becomes one of the most feasible technologies with recurrent network units to achieve spatiolemporal modeling [10,
for nowcasting [2]. 11]. However, they are still trapped in a long-term prediction dilemma

* Comresponding author at: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China.
E-mail address: tw@nuist.edu.cn (W. Tian).
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Abstract: Tropical cyclones (TCs) can cause significant economic damage and loss of life in coastal
areas. Therefore, TC prediction has become a crucial topic in current research. In recent years, TC
track prediction has progressed considerably, and intensity prediction remains a challenge due to
the complex mechanism of TC structure. In this study, we propese a model for short-term intensity
prediction based on adaptive weight learning (AWL-Net) for the evolution of the TC's structure as
well as intensity changes, exploring the multidimensional fusion of features including TC morphology,
structure, and scale. Furthermore, in addition to using satellite imageries, we construct a dataset
that can more comprehensively explore the degree of TC cloud organization and structure evolution.
Considering the information difference between multi-source data, a multi-branch structure is
constructed and adaptive weight learning (AWL) is designed. In addition, according to the three-
dimensional dynamic features of TC, 3D Convolutional Gated Recurrent (3D ConvGRLU) is used to
achieve feature enhancement, and then 3D Convolutional Neural Network (CNN) is used to capture
check for and learn TC temporal and spatial features. Experiments on a sample of northwest Pacific TCs and
Updates official agency TC intensity prediction records are used to validate the effectiveness of our proposed
model, and the results show that our model is able to focus well on the spatial and temporal features
associated with TC intensity changes, with a root mean square error (RMSE) of 10.62 kt for the TC
24 h intensity forecast.

Citation: Taan, W.; Song, P; Chen, Y;
Xu, H; fir, C; Sian, KTCLE
Shost-Term Intensity Prediction of
Tropical Cyclones Based on
Multi-Soue Data Fasion with
Adaptive Weight Leaming, Rewiot
Sens. 024, 16, 964 Iitps:/ )

Keywords: tropical cyclone; intensity prediction; remote sensing data; adaptive weight learning
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1. Introduction
Received: 11 January 2024 The tropical cyclone (TC) occurs oi the tropical or subtropical ocean, with sufficient
Revised: 6 March 2024 ocean temperature and water vapor as the support of its develnpment, and is a weather

Aceepted: 7 March 2024
Published: 11 March 2024

system with organized convection. Since the landfall of a TC is always accompanied by
storms and floods, tsunamis, mudslides, etc., it destroys buildings and facilities, leading to
large—scale damage, causing huge social and economic losses to coastal areas and sericms]}'
damaging human life and property safety [1-3]. For example, Hurricane Katrina struck
T @B New Orleans and its surrounding areas in the United States in August 2005. It had wind
opyright © 2024 by the suthors, : .
Licenses MDPL Basel, Switzerland.  SPEedS reaching up to 175 miles per hour and a storm surge of 20 feet, resulting in the
This b g a; “Pml secess aracte  death of 1800 people and causing economic losses exceeding USD 125 billion. Typhoon
distributed wnder the trms and  Haiyan made landfall in the central Philippines in November 2013 with wind speeds of
conditions of the Creative Commons 1P 10 195 miles per hour, making it one of the strongest recorded typhoons. The storm
Abtritnation (CC BY) licnse (httpse//  SUTge of more than 13 feet and brought heavy precipitation, triggering severe flash floods
aeativecommons.onglicenses by/  and mudslides. The typhoon caused over 6000 deaths and resulted in significant damage
40/ to infrastructure, farmlands, and villages. Therefore, predicting TC activity is the key to

Remote Sens. 2024, 16, 984, hitps: // doi org /10.3390/rs16060954 https:/ /www.mdpi.com /journal/ remotesensing
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A Lightweight Multitask Learning Model With
Adaptive Loss Balance for Tropical Cyclone
Intensity and Size Estimation

Wei Tian®, Xinxin Zhou @, Xianhua Niu, Linhong Lai, Yonghong Zhang. and Kenny Thiam Choy Lim Kam Sian ®

Absiraci—Accurate tropical cyclone (TC) intensity and size es-
timation are key in disaster management and prevention. While

learning model (TC-MTLNet) with adaptive loss balance to simul-
tancously estimate TC intensity and size. Adaptive loss balance is
utilized to solve the problem of inconsistent convergence speed of

TC i and size tasks. The model based on four
-D four 3-D lutions and three fully connected
luyers tukes up less | mnd st space and impr

eventually dissipating at sea or afier moving over land. Land-
falling TCs are accompanied by severe weather such as strong
wind, rainstorms, and storm surges, which can cause significant
loss of life and property [1], [2). TC intensity is defined as the
maximum average wind speed neéar the TC centeér. It is an impor-
tant parameter that measures the destructive power of TC and is
used in TC waming, prevention, and management. Accurite TC
intensity estimation also helps to predict the rapid intensification
of TC i y. TC size indicates the radius of TC influence.

lhmqu?tﬂmﬁynﬂﬁrmhym.hwl-
edge among multiple tasks. due to the imk
distribution of TC mplu.lru significantly few low-intensity and
hﬂ-ﬂmuTtmm&unbmpmaput

it to TC i il imation. So, we utilize the
Mduwympkwcm&wm!w
weight the loss function to enable the model to be generalized to all

les. The result sh hal the root error (RMSE)
wrtm,-m;&amm:m&mm
that of the Ad d Dvorak Technique (ADT) and 11.4% lower
than that of the deep learning method (3DAttentionTCNet). The
mean absolute error (MAE) of the TC size estimation is 20.89 nmi,
which is a 16% reduction compared to the Multi-Platform Tropical
Cyclone Surface Winds Analysis (MTCSWA).

Index Te data  distributi dual

lightweight multitask learning lwdl!l. tropical cyclome (TC)
intensity, TC size.

L. INTRODUCTION
ROPICAL cyclones (TCs) are ph with Iy
low central pressure, forming over the tropical ocean and
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TC size is usually measured by several wind radii provided
by the forecast centers, including the gale-radius (35 kis, R35),
stormeradius (50 kis, R50), hurricane-radius (64 kis, R64) and
the radius of maximum wind (RMW) [3], [4], [5]. [6]. [7]. R35
represents the potential impact area of a TC and is one of the most
widely used parameters 1o predict TC influence and mitigate TC
impact. Thus, the present study conducts TC size estimations
based on R35.

Obtaining TC observations is difficult because TCs spend
maost of their lifetime over the ocean, where deploying obser-
vation equip is challenging. Therefore, aircraft and ships
are used to obtain TC observations at sea. However., these ob-
servational methods are very expensive. With the development
of artificial intelligence, satellite imagery has become the main
source of information for TC intensity estimation. Although
satellite imagery cannot directly measure TC intensity, it can be
estimated indirectly through the captured cloud structure [8], [9].
For example, infrared satellite imagery provides the temperature
distribution of radiation surfaces, water vapor satellite imagery
provides information on the water vapor in the clouds, and
microwave satellite imagery provides information such as the
TC eye, eyewall and spiral rainbands. TC intensity estimation
using satellite imagery is based on the fact thwt TCs of sim-
ilar intensities have similar cloud structures. In meteorology,
the main TC intensity estimation methods include the Dvorak
technique [10], the advanced Dvorak technique (ADT) [11], the
deviation angle variance technigue (DAV) [12], and the satellite
consensus technigue (SATCON) [ 13]. [ 14], [15]. These methods
rely on anificial experience or various algorithms to obiain
features related 1o TC intensity and then use regression models
o obtain TC intensity. However. the cloud structure features
related 1 TC intensity determined by humans are subjective.
In addition, the design of feature extraction algorithms requines
expertise, which greatly limits TC intensity estimation. With the
development of deep learning technology, intensity estimation
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ABSTRACT

Tropical eyclones (TCs) are one of the most serious types of narural disasters, and accurate TC activity predictions are
kev to disaster prevention and mirigation. Recently, TC track predictions have made significant progress, but the ability to
pradict their intensity is obviously lagging behind, At present, research on TC intensity prediction takes atmospheric
reanalysis data as the research object and minez the relanonship between TC-related environmental factors and intensity
through deep learning. However. reanalysiz data are non-real-time in nature, which does not meet the requirements for
operational forecasting applications. Therefore, a TC intencity prediction medel named TC-Rolling is propezed, which can
simultaneously extract the degree of symmerry for strong TC convective cloud and convection intensity, and fuse the
deviation-angle variance with zatellite images to construct the correlation between TC convection structure and intensity.
For TCs® complex dynamic proceszes, a convolutional neural network (CNN) is uzed to learn their temporal and spatial
features. For rzal-time intensity estimation, multi-task learning acts az an implicit time-series enhancement. The model iz
designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for
short-term intensity predictions. Since multiple tasks are correlated, the loss function of 12 h and 24 h are corrected. After
testing on a sample of TCs in the Northwest Pacific, with a 4.48 kr root-mean-square error (RMSE) of 6 h intensity
prediction, 3.78 kt for 12 h, and 13.94 kt for 24 h, TC records from official agencies are used to assess the validity of TC-Rolling.

Key words: tropical cyclone, intenszity, structure, rolling prediction, multi-task

Citation: Tian, W., P. Song, Y. Y, Chen, Y. H. Zhang, L. G. Wu, H. K. Zhao, K. T. C. Lim Kam 5ian, and C. Y. Xiang,
2025: Short-Term rolling prediction of wopical eyclone intenzity based on multi-task learnin
angle variance and satellite imagery. Adv. Amos. Sci., 42(1), 111-128, h oi.org/10.1007

with fusion of deviation-
00376-024-3301-0.

Article Highlights:
* Tropical cyclone structure is quantified to guide intensity pradiction.

* Loss function designed to correct cumulative error generated by rolling forecasts and the temporal relationship of the
forecasting task.

1. Introduction nized weather systems, with the airflow rotating and converz-
ing to the center, forming a strong cvclone and low pressure
vortex with a warm-core structure. The occurrence of TCs
plays a rele in regulating climate, alleviating droughts, and
maintaining ecological balance, but TC intensity changes

Tropical eyclones (TCs) are powerful, deep, and orga-

## This paper is a contribution to the special iszue on Al Applications
in Atmospheric and Oceanic Science: Pionsering the Future, : L
* Corresponding author: Wei TIAN quickly. Their strong. sudden, destructive force and wide cov-
Email: tw @ nuist.edu.cn erage make TCs one of the most deadly and damaging types
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Abstrack: Accurate tropical eyclone (TC) intensity estimation is crucial for predicton and disaster
prevention. Currently, significant progress has been achieved for the application of convolutional
neural networks (CNNs) in TC intensity estimation. However, many studies have overlooked the
fact that the local convolution used by CNNs does not consider the global spatial relationships
between pixels. Hence, they can only capture limited spatial contextual information. In addition, the

check for special rotation invariance and symmetry structure of TC cannot be fully expressed by convolutional
updates kernels alone. Therefore, this :‘.t-udy proposes a new deep learning-based model for TC intensity
Citatione Tian, W, Lad, L Niu, X estimation, which uses a combination of rotation equivariant convolution and Transformer to address
Thau, X; Zhang, ., Stan, KTCLEK the rotation invariance and symmetry structure of TC. Combining the two can allow capturing both

Estimation of Tropical Cyelone

local and global spatial contextual information, thereby achieving more accurate intensity estimation.
Intensity Lsing Multi-Platiorm

Furthermore, we fused multi-platform satellite remote sensing data into the model to provide more
information about the TC structure. At the same time, we integrate the physical environmental
i B sy field information into the model, which can help capture the impact of these external factors on TC
205, hitps:/ /doiong/ 103390/ intensity and further improve the estimation accuracy. Finally, we use TCs from 2003 to 2015 to
150R0085 train our model and use 2016 and 2017 data as independent validation sets to verify our model. The
overall root mean square error (RMSE) is 8.19 kt. For a subset of 482 samples (from the East Pacific
and Atlantic) observed by aircraft reconnaissance, the root mean square error is 7.88 kt.

Remote Sensing and Desp Learning
with Enviconmental Field

Academic Editors: Le Sun, Yuhui
Zhenyg, Guoging Zhang and

Byeungwio Jeon . ) B B . ) .
Keywords: tropical cyclone intensity; multi-platform remote sensing data fusion; remote sensing;

Received: 16 March 2023 rotation equivariant convolution; attention mechanism and transformer
Revised: 12 April 2003

Accepted: 13 Apal 2023
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1. Introduction

Tropical cyclones (TCs) are catastrophic weather phenomena that can significantly
Copyrights © 2023 by the suthors impact human life. The strong winds and heavy rainfall that accompany these systems can
Licensee MDPL Basel, Switzeslind.  Cause substantial damage to property and hinder social and economic development in the
This asticle i an open access article  Ai7ected regions. Therefore, accurately estimating the intensity of TC is of great significance
distributed  under the terms and  fOr both theoretical research and practical applications.

condlitinng of the Craskve Commons The most widely used method for estimating TC intensity is the Dvorak technique [1),
Attribution (CC BY) license (https://  Which relates the rotation, eye shape, and thunderstorm activity of a TC to its strengthening
cruativecommons.org/ licenses by / or weakening. This technique assumes that cyclones with similar intensities often have
&/ similar patterns and requires expert analysis of visible and infrared satellite images of
Remote Sens. 2023, 15, 2085. https:/ / doi.org /10,3390 / rs1 5082085 hitps:/ /www.mdpi.com /journal / remotesensing
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E=EE S

P,

ERfE AR (TC) PR ETCRERLF G RIS SoE. B S A (Ivorak) EITZRH|
TTIOHESE, PRSI ETCERNE (51 EMH Shvorak ESHAT. M. DvoraksidifriEg L mid e
ERF . CLENEREEE TR TR . BReEa., ThEEanE
R P R PR TCR R (A A . k. 1) SRHRSEE T AR TC IR S B 2 #E
ERRan sl Rl T S0 MR TCEREETHEY. Fh AR RrgiE. Ay,
H—H. ERSTCRAFREHELE. 3 AHANBREETCRFELHH DL REESE. ditaren
H T R A A LA IR O (T i R R . RN g el o T B G
SAEBHE. ERYHTCEERFAA T, UETERATORAEETRT. AHEENEIESR
Sk TR R R R

Abstract:

Aecurate estimstlon of tropleal cyclone (TC) Intenzity s the key to TC prediction and
disaster warning Dvorak technology (Ivorak) iz widely uzed for TC strength determipation
intermationally, aed deep learning is comparable to Dvorak in TC strength estlmation
However, dus to the subjectivity of Dvorak’s Intensity determinags lon sevhod and the
inconsistency between ocean basins, as well as the feet that only satellite abservation
data are uged to estimate the intensity of deep learning, an objective and mulvi-data
fuzlon deep learning model 12 urgently needed to Improve the accuracy of TC intensity
eatimatlon. For this purpose. 1) a set of sultl-chanmel cloud map TC intensity estimation
duta set will be established:?) using satellite imsges and envivonmental leld
information. build a TC strength estimation model based on eonvelutlomal pearal metwerks,
amd generate new data gets of TC strength that auteasatically exiract sirength
characterlstics, are relatively [ndependent, consistent and objective: ) verify the new
strength data eonstructed by using the TC strength model of dynamic downsealing. and
further mderstand the lmportant factors affecting the TC strength estimatlon and change
through the interpretabllity of deep learnbng. It Iz expected that the completion of the
project will put forward the sethod of deep learning intensity determination based an the
integration of envireemental blg data, overcose the shortcomings of current TC Intenslty
determinatlon, improve the estimation level of TC intensity, and provide an importanmt
demonstrat lon for the desp integration of deep learning in the field of meteoralogy.

X (AT, Aar (RN, GRS, RERfE. Sl PRESEH

Keywords (FH4+-947F) : Tropical cyclone intensity estimation: Convelutional
Meural Setwork: Envirommental information: Sulti=channel satellite data
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N 5 A S i (RS

GiHME

P,

MERREY RN (TC) SMEEMMER MK, BN ENEE NS, ENRET
RN EARSE. B WENARSITENFERERMNAIE. SRR AR TN,
AT P A TR R R ) R M R A E R B TR RUCE . 8 LU Ak % B i .
R AR T IR TCR N . . 1) FH R RN T
TS B, HORAFLHEE: ) THAEBMS NNTCIER Fatil. 3) ETEE$EN
SN TR RR AR STRHE. RERTCRE RRRNET. HHEHEESF AR Y
e, WARA M IEAE. T RN IMTORA MY . o MR A S AL
B S. AAEBEEERESHENRENNEE L.

Abstract:

Accurate prediciion of tropleal eyclone (TC} intensity Is the key to disaster prevention
and mitlgation. The complexity of Intensity change mechanlsms and influvencing factors
makes predicting tropleal cyelone letensivy challenging. At present, mumerical models and
statistical models have problems such as low intensity prediction sccuracy and |imived
understamling of physical processes, while deep learning Intensity prediciion models
baged on reamalysis data have problems such as subjective selection of maln infloencing
factors and diffieulty in translating operatlomal forecasts. Deep learning models
incorporat lng physical factors are urgently needed to leprove the accuracy of TC
intengity prediction Therefore. 1) satellite observations are ssed to construct TC
convect ive structure Information and provide imdicators of Intensity clhange; 2)
autoregressive networks are waed to predict TC bright temperature radial strocture; 3)
cofvolutlonal peural petsorks are used 1o extract features of satellite images and
convective structure to construct TC Intensity shori—term predictlon sodels, and
multi-task learning iz used to mechanism to establish the long-term dependence of the
model on data amd Improve the intenslty predietlon performance. The project alms to
lmprove TC intensity prediction aml provide forecasting ald guidance For operational
forecasting of tropical eyelome intensity, which is of theoretical and practical
slmificance for mportant disaster warning and prevention

R (B84 3F) il UeE: SEESE R, Huap(RdhiRss e B

Keywords (4543 : Tropical Cyclone; Deep Learning; Tropical Cyelone
Convective Structure Information
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